Study on SUPEL Scenario for Direct Recycling of Spent BWR Fuel in BWR System

Abdul WARIS*, Sumbono, Indarta Kuncoro AJI, Novitrian, and Zaki SU'UD

Nuclear Physics & Biophysics Research Division, Department of Physics, Institut Teknologi Bandung, Indonesia

Outline

Background
Objective
Methodology
Results and Discussion
Conclusion

Background

Nuclear Energy Industry grows with 3 main issues:

- Reactor safety → Multi-barrier System : Defense in Depth
- 2. Nuclear Proliferation -> political aspects
- 3. High level wastes (HLW) management
 - The truly problem in nuclear energy

if we can manage HLW, public acceptance maybe increase

PHYSIS

Once countries decide to "go nuclear" they may think about "HLW repository site" or at least "underground research laboratory (URL)"

Underground Research Laboratories

Site specific URL:Lac de Bonnet, Canada (http://www.oecd-nea.org)

Generic URL: Kolar Gold Field, India

CMAME 2014

- The other option → they may choose "closed cycle strategy" to recycle HLW in any type of nuclear reactor or hybrid systems → reprocessing plant is required
- Its very difficult to have country's own reprocessing plant → International regulation and very high cost
- Even OECD countries likes Korea is not allowed to has a reprocessing plant

- IAEA (International Atomic Energy Agency) suggests to construct and operate some regional reprocessing plants (for example in east asia region)
- Non-proliferation strategy proposed not to separate Plutonium with Minor Actinides during the spent fuel reprocessing
- Some countries (especially which not allowed to have any reprocessing plant and enrichment plant) should find a <u>best</u> way to deal with their HLW.

PHYSIS

DUPIC: <u>Direct</u> <u>Use</u> of spent <u>PWR</u> fuel <u>In</u> <u>CANDU</u> reactors Strategy

- Country likes Indonesia (not allowed to has reprocessing plant & enrichment plant, and If "go nuclear" may has only 1 type of nuclear reactor) should has another alternative way for dealing with nuclear waste
- Best nuclear power plant (NPP) candidate for Indonesia is LWR (light water reactor) either pressurized water reactor (PWR) or boiling water reactor (BWR)
- We have proposed a scenario that called: SUPEL (Straight Utilization of sPEnt LWR fuel in LWR reactors) scenario for Nuclear Waste Recycling Strategy

SUPEL Scenario for Recycling Strategy

Objective

- We have evaluated SUPEL scenario for Nuclear Waste Recycling Strategy in PWR
- The objective of this study is to evaluate the SUPEL scenario for BWR spent fuel direct recycling scheme in BWR System

Methodology

Design parameter of studied BWR

Thermal power output	3000 MWth
Average cell power density	59 Wcm ⁻³
Fuel pellet diameter	0.529 cm
Fuel rod diameter	0.615 cm
Pin pitch	1.444 cm
Fuel type	Oxide
Cladding	Zircaloy-2
Coolant	H ₂ O
HYSI S	

Nuclear Power Plant using Boiling Water Reactor (BWR)

RESULTS and DISCUSSION

CMAME 2014

Effective multiplication factor (k-eff) of 3.0% of UO₂ enrichment

Effective multiplication factor (k-eff) of 5.0% of UO₂ enrichment

PHYSIS

Comparison of neutron spectrum

the neutron spectra become harder (shifts to the high energy region) with the escalating of trans-uranium (TRU) nuclides in the reactor.

Conclusion

The study on direct recycling of BWR spent fuel to support SUPEL scenario has been conducted.

- The reactor can achieve it criticality for U-235 enrichment in loaded fresh fuel is higher than 5% with the amount of spent fuel in the core is less than 9%.
- The neutron spectra become harder with the increasing of U-235 enrichment in loaded fresh fuel as well as the amount of spent fuel in the core

