

Fabrication of PVDF Film Using Deep Coating Method and Characterization

Mitra Djamal, Ambran, Ramli

Theoretical High Energy Physics and Instrumentation Research Group Faculty of Mathematics and Natural Sciences Institute Technology of Bandung

Introduction

af THE ASAHI GLASS FOUNDATION

PVDF is generally produced by the free-radical polymerization of VDF monomer

Representations of the molecular structure of the vinylidene difluoride (VD) monomer and of the α and β forms of the PVDF polymer.

PVDF- α form

PVDF- β form

THE ASAHI GLASS FOUNDATION

a

Recently, PVDF with β-phase structure are widely developed due to molecules with this structure provides the greatest piezoelectric effect compared with other phase.

Chain structure of α-phase in PVDF

THE ASAHI GLASS FOUNDATION

Chain agglomeration of β-phase in PVDF.

af THE ASAHI GLASS FOUNDATION

Piezoelectric effects relate closely to its crystalline phase form.

Piezoelectric constant is proportionate to the increase of its β-phase in the substance

PVDF that crystallize from the melting process will then form a structure that contains α -phase.

To transform the α -phase into β -phase doing with Annealing process.

EXPERIMENT

In this research, the steps or stages as following:

- Prepare equipment and materials
- Make a solution of PVDF with several concentrations
- Dissolution process by providing appropriate heating
- Preparing deep coating machine
- Placing glass preparations (substrate) on the machine deep
- •Placing PVDF solution in the space provided on the machine deep coating..
- Implement deep coating process
- drying the sample
- Annealing process
- PVDF films characterization by FTIR and XRD

RESULT AND DISCUSSION

PVDF films have been obtained with three concentrations of solvents, namely 10%, 15% and 20%. as shown follow:

PVDF film sample

THE ASAHI GLASS FOUNDATION

CHARACTERIZATION

"These results show an increase in the β fraction with increasing concentration"

THE ASAHI GLASS FOUNDATION

a

Diffraction pattern of the sample with temperature variations

Diffraction results showed an increase of β fraction with increasing temperature

a

CONCLUSION

af THE ASAHI GLASS FOUNDATION

Beta fraction The optimum solvent concentration are 20% with beta fraction are 44,5%

The optimum annealing temperature is 110°C with beta fraction **58%** and a long warm-up time is 30 minutes with **60%** beta fraction

Obviously the result made PVDF films exhibit good piezoelectric properties.

Research Output

Paper:

- Ambran hartono, Mitra Djamal, Suparno Satira, Herman, Ramli, "Preparation of PVDF Thin Film Using Deep Coating Method for Biosensor Transducer Applied," Proceeding of 2013 3rd ICICI-BME, *IEEE Catalog Number: CFP1387H-ART ISBN: 978-1-4799-1650-4(2013) pp 408-411.*
- Mitra Djamal, Suparno Satira, Herman Bahar, Ambran Hartono, Dadang Suhendar, Ramli, Development of HVDC 20kV Amplifier for Optimization of Polymer Actuator, ICSSA 2014

THANK YOU

