

Design and Development of Vibration-Material GMR Based-Sensor

Mitra Djamal, Ari Prabowo, Ramli

Theoretical High Energy Physics and Instrumentation Research Group Faculty of Mathematics and Natural Sciences Institute Technology of Bandung

af the asahi glass foundation

Outline Presentation

- Introduction
- Design of Vibration Sensor
- Calibration and Measurement
- Result and Discussion
- Research Output

Introduction

af THE ASAHI GLASS FOUNDATION

Motivation

- The results of earthquake monitoring conducted by Badan Meteoreologi dan Geofisika which indicates that the seismic activity in Indonesia is very active.
- Vibration like an earthquake is a phenomenon of physics, where the characteristics of these vibrations can be used as an early warning system so as to reduce the loss or damage.
- GMR materials have great potential as a next generation magnetic field sensing devices, has high magnetic and electric properties so it has the potential to be developed into a variety of applications such as vibration sensors.

An earthquake is a vibration or shock that occurs on the Earth's surface caused by the release of energy from the deep so that creates seismic waves.

Seismic Waves

a. Body Wave

b. Surface Wave

THE ASAHI GLASS FOUNDATION

Vibration Sensor:

(a) Vertical motion; (b), (c) Horizontal Motion; (d) Vibration

sensor use laser

(d)

Structure of GMR material: a. Sandwich (trilayer), b. Spin Valve, c. Multilayers, d. Granular

GMR Sensor NVE with Functional Block Diagram

THE ASAHI GLASS FOUNDATION

Design

af THE ASAHI GLASS FOUNDATION

Wheatstone bridge circuit used in the prototype sensor

output voltage

$$V_{OUT} = \left[\frac{R_1 R_{sensor1} - R_3 R_{sensor2}}{(R_1 + R_{sensor2})(R_3 + R_{sensor1})} \right] V_{IN}$$

At equilibrium, the output voltage in equation above would be equal to zero.

When near the GMR thin film sensor is given an external magnetic field, the resistance of a GMR thin film will change, so that the output voltage will arise.

Schematic of measurement system

Calibration and Measurement

af THE ASAHI GLASS FOUNDATION

Calibrator System

Data of Mesurement for Frequency 0,01 Hz and 1 Hz

Result and Discussion

af THE ASAHI GLASS FOUNDATION

Graph of Frequency (from FFT function):

a. Frequency 0,001 to 0,005 Hz;

- Pendulum system can be use to detect vibration in low frequency
- Frequency 0,4Hz is natural frequency of pendulum, so this frequency must be avoided
- Author belive that this sensor can be use to detect eartquake very well, but development of the sensor is needed to make this sensor perfect.

Research Output

af THE ASAHI GLASS FOUNDATION

Journal:

Mitra Djamal, Ramli, "Thin Film of Giant Magnetoresistance (GMR) Material Prepared by Sputtering Method," *Advanced Materials Research Vol. 770 (2013) pp 1-9.*

Conference:

Ary Prabowo, Mitra Djamal "Development of Vibration Sensor low frequency based GMR to Detect Eartquake" Seminar ISCSM, ITB, june 2013

Patent:

Alat Ukur Getaran Frekuensi Rendah Berbasis Sensor GMR (to be submitted)

