Vector Quantization of Stars and Galaxy for Dark Matter Mapping Applications

Andriyan B. Suksmono

STEI-ITB
Objective

- Develop A New Method to Measure A Galaxy Ellipticity For Weak Lensing Measurement
 - Ellipticity Distribution can be Used to Infer and Map of Unseen Distributed Matters
 - Need for Accurate Measurement
Proposed Method

• Vector Quantization
 – Basically a table-lookup method:
 • directionally stacked images, split into a number of reference vectors
 • Use the reference to measure ellipticity by best-matching
 – Two possible VQ techniques are investigated
 • Direct VQ of Raw Images
 • VQ on Image Parameters (FFT Coefficients)
Background

• The matters that we see in daily life; all object around us, moon, planets, stars, and galaxy, are only a small parts (~5%) of the universe. According to the most recent Astrophysics/ Cosmology findings, most of the universe are consisting of dark energy (~75%) and (cold-) darkmatter (20%).

• Although darkmatter cannot be observed directly, its presence causing space-time curvature, can be detected by analysing the changes of its neighbouring objects.

• Accurate measurement of galaxy shape, i.e. the ellipticity and related parameters, caused by weak gravitational lensing is a powerful method to map the distribution of the darkmatter.
Figure 1. Gravitational Field of groups of galaxy changes the shape of background galaxy. Darkmatter, although cannot be seen, change space-time curvature around them in a similar way, so that its existence and distribution can be map by measuring the distribution of the ellipticity [Copyright: Wikipedia.org].
Figure 2. Random orientation of galaxy yields zero ellipticity value when the space-time not affected by mass. The presence of darkmatter induces shear field, so that averaging ellipticity values in a region gives a small but non-zero residual shear value.
The Challenge

• Small changes in ellipticity needs accurate measurement of the galaxy ellipticity.

• Non-ideal condition in the observation:
 1. blurring/smearing caused by non-ideal optical component and atmospheric disturbance,
 2. pixelation effect by limited capability of the sensor/CCD, and
 3. unavoidable thermal noise of the instruments.
Solution

• We propose VQ (Vector Quantization) to measure the ellipticity is based on the following considerations
 – Codebook construction is performed by clustering and stacking. Stacking will reduce the variance or noise energy, proportional to the number of objects in the cluster.
 – The accuracy is scalable, i.e., the larger the codebook size, the smaller the difference (error) between the actual value and the prototype.
 – It is possible to lower the noise floor by adding more member in a cluster.
VQ of Observed Images
Synthesize the Codebook

The 2D ellipticity space is partitioned into K-subspaces, then the center of each partition will be used to construct the prototype.
Experiments
Case-1: Noiseless-VQ

• Two basic VQ are performed:
 1. VQ on the values of ellipticity (VQE)
 2. VQ on generated images (VQI)
• It is expected that, when the codebook size is increased, then
 – VQE: obviously (based on Rate-Distortion Theory), resolution will increase, MSE will decrease
 – VQI: resolution will increased/ MSE will decrease -> to be confirmed, since now the ellipticity values has been mapped into elliptic-gaussian function.
 – The difference of the two will be observe: VQE ~ VQI, VQE > VQI, or VQE < VQI?
Case-2: Noisy VQ

• VQ, particularly VQI, for data with noise will be evaluated:
 – Effect of noise power on MSE
 – Identify the “filtering” effect, in what noise regime it is effective:
 • Low ?
 • Medium ?
 • High ?
Results: noiseless data

<table>
<thead>
<tr>
<th>No.</th>
<th>CD_SIZE</th>
<th>CR</th>
<th>N_TRAIN</th>
<th>MSE</th>
<th>ELLIPTICITY</th>
<th>IMAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>32</td>
<td></td>
<td>128</td>
<td>0.042070</td>
<td>0.042457</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
<td>0.027120</td>
<td>0.025043</td>
</tr>
<tr>
<td>3</td>
<td>32</td>
<td>8</td>
<td></td>
<td></td>
<td>0.014854</td>
<td>0.015216</td>
</tr>
<tr>
<td>4</td>
<td>64</td>
<td>4</td>
<td></td>
<td></td>
<td>0.007283</td>
<td>0.008895</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>64</td>
<td></td>
<td>512</td>
<td>0.042888</td>
<td>0.045471</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>32</td>
<td></td>
<td></td>
<td>0.030825</td>
<td>0.030768</td>
</tr>
<tr>
<td>7</td>
<td>32</td>
<td>16</td>
<td></td>
<td></td>
<td>0.020123</td>
<td>0.020767</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
<td>8</td>
<td></td>
<td></td>
<td>0.014602</td>
<td>0.015447</td>
</tr>
<tr>
<td>9</td>
<td>128</td>
<td>4</td>
<td></td>
<td></td>
<td>0.008976</td>
<td>0.009585</td>
</tr>
<tr>
<td>10</td>
<td>256</td>
<td>2</td>
<td></td>
<td></td>
<td>0.004728</td>
<td>0.006386</td>
</tr>
</tbody>
</table>

- Two sets of VQ with N-train 128 and 512 are conducted.
- CR: compression ratio, ratio of N_TRAIN to Codebook Size
Analysis

• The table shows:
 – VQI and VQE are comparable
 – MSE reduced as codebook size increased, or compression ratio decreased.
 – For the two sets with different N-train, the MSE value on the same CR are comparable
VQ on Noisy image

<table>
<thead>
<tr>
<th>No.</th>
<th>Noise</th>
<th>MSE</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>QM</td>
<td>VQ</td>
<td>VQ_QMFFT</td>
</tr>
<tr>
<td>1</td>
<td>10%</td>
<td>0.007719</td>
<td>0.011242</td>
<td>0.009146</td>
</tr>
<tr>
<td>2</td>
<td>20%</td>
<td>0.014278</td>
<td>0.015202</td>
<td>0.010331</td>
</tr>
<tr>
<td>3</td>
<td>30%</td>
<td>0.020728</td>
<td>0.022004</td>
<td>0.010974</td>
</tr>
<tr>
<td>4</td>
<td>40%</td>
<td>0.031968</td>
<td>0.029875</td>
<td>0.010350</td>
</tr>
<tr>
<td>5</td>
<td>50%</td>
<td>0.034030</td>
<td>0.032161</td>
<td>0.013327</td>
</tr>
<tr>
<td>6</td>
<td>60%</td>
<td>0.044874</td>
<td>0.038375</td>
<td>0.012630</td>
</tr>
<tr>
<td>7</td>
<td>70%</td>
<td>0.057340</td>
<td>0.052018</td>
<td>0.016543</td>
</tr>
<tr>
<td>8</td>
<td>80%</td>
<td>0.060293</td>
<td>0.055822</td>
<td>0.015657</td>
</tr>
<tr>
<td>9</td>
<td>90%</td>
<td>0.071178</td>
<td>0.065540</td>
<td>0.019778</td>
</tr>
<tr>
<td>10</td>
<td>100%</td>
<td>0.085677</td>
<td>0.071020</td>
<td>0.021548</td>
</tr>
</tbody>
</table>

- **NTRAIN=128, CDSIZE=64**
- **Compare VQ with existing QM (Quadrature Moments) Method**
Analysis

• Simulation Results Indicates:
 – Upto 30% noise energy, QM perform better than VQ.
 – In high noise regime (>30%), VQ perform better: directional stacking start to works removing the noise.
 – In practice (benchmark data), low MSE is expected (<0.02). Direct VQ possibly becomes impractical.

• Why it doesn’t work well?
 – Ellipticity values are determined by QM on noisy image.

• Possible Improvements:
 – Ellipticity or related parameters should has been measured based on clean images: Use synthetic codebook
 – On clusterring:
 • Better to use QM-params, instead of ellipticity (linearity issues)
 • Better to use feature that not-sensitive to centroid: Absolute FFT of the image
Further Improvements

FFT Features
Scenarios

• Embedding elliptic parameters on the image data/feature:
 – Reason:
 • direct measurement on codebook entry is not accurate for high-noise regime
 • Better to generate “synthetic” codebook where the ellipticity is known beforehand
 – Absolute FFT feature: reduce the image into a few parameters, non-sensitive to centroid
Feature

- Feature consisting of two parts
 - Absolute Fourier Coefficients
 - Only half is required, due to symmetricity and no-centroiding-problem aspect; representing elliptical geometry or shape of the image
 - Used as a “key” to retrieve codebook entry
 - QM is embedded in the feature
 - Better representing ellipticity
VQ_QMFFT

Blurred Galaxy → CD GALAXY

Star PSF → CD STAR

REF: \{e_1, e_2\}

Neural Nets

QM_gal1

QM_gal

QM_star

\{e_1_hat, e_2_hat\}
Simulation Steps

- Generate random numbers: \(E := \{e_g, e_s\} \), \(E1 := \{e_{g1}, e_{s1}\} \)
- VECTOR QUANTIZATION STAGE:
 - VQ of the Galaxy:
 - Generate gaussian galaxy from \(E \)
 - Calculate \(\text{abs(FFT)} \) of the galaxy: \(AGALS \)
 - Calculate QM of the galaxy
 - Construct galaxy feature training set: \(XGAL\{QM_{gals}, 100*AGALS\} \)
 - Construct Galaxy Codebook: \(GAL_ctrs \)
 - VQ of the STARS
 - Generate Moffat -stars from \(E \)
 - Calculate \(\text{abs(FFT)} \) of the stars: \(ASTARS \)
 - Calculate QM of the stars
 - Construct star feature straining set: \(XSTAR\{QM_stars, 100*ASTARS\} \)
 - Construct Star Codebook: \(STAR_ctrs \)
- EVALUATION STAGE
 - Generate sersic -galaxy and moffat-stars from \(E1 : fgal, fstar \)
 - Simulate degradation: \(bgal = fgal*fstar + \text{noise} \)
 - Normalization of the object (bgal)
 - Calculate feature: \(\text{fft of the bgal AGALSC} \)
 - Use features to retrieve codebook-entries: get VQ of QM params: \(QM_gal \)
 - Do similar things with the star: \(QM_gal \)
 - Use \(QM_gal \) to correct \(QM_gal \), calculate ellipticitieas
Codebook of FFT Coefficients (Abs)

Use (half) magnitude coefficients of FFT2
3x5 = 15 length feature (instead of 50x50=2500)
Preliminary Results

• Simulation Parameters:
 – 400 galaxy
 – 100 size codebook
 – Noise Variance: 0.01

• Theoretical RMS: 0.0100

• RMS of DirectVQ: 0.0263

• RMS of VQ_QMFFT: 0.0142
Summary

- VQ of the Image Parameters Outperform Direct VQ
 - More Stable Ellipticity Measure in Frequency Domain
 - Selecting Fewer Dominant Parameter
 - implies Low Pass Filtering -> Reduce Noise
 - Increase Computational Speed
Next Steps

- Evaluate both of Direct VQ and FFT-VQ on Benchmark Data
- Fine Tuning the Performance using Neural Networks
- Write A Comprehensive Report
 - Submit to A Journal
Thank You