Study of Characteristic of Random Penetrable Grain Model and Gravity Driven Sedimentation Model

FOURIER DZAR ELJ ABBAR LATIEF, UMAR FAUZI
Introduction
Characterization is important to understand structures of porous materials (rocks) and its physical properties.

Measurements or characterization:

- Direct: Sample → equipment → result
- Indirect: Sample → ‘digitized’ → ‘measurements’ → results

Nowadays: digital ‘measurements’ are growing rapidly.
Why digital ‘measurements’?

- Digital equipment are highly developed
- Benefit of digital characterization/measurements:
 - non-destructive,
 - repeatable,
 - transferable ‘digital samples’,
 - clean (environmentally),
 - safe and user friendly,
 - easy,
 - becoming cheaper,
 - etc.
Computational rock physics

- Obtained from imaging devices (SEM, μCT, NMR, etc.)
 - Highly representative
 - Not widely available.
- Computer modeling
 - Highly feasible.
 - Flexible: parameters are easily adjusted.
- Non-destructive
- Repeatable
- Various methods are widely available
- Samples are intact, easily preserved

- Digital representation
- Digital characterization
Methods
Gravity Driven Sedimentation Model (Grv)

- Based on Molecular Dynamics (MD) method
- Model parameters:
 - Medium size, range of grain size
 - Number of grains
Simulation
Random Penetrable Grain Model (Rnd)

- Evenly distributed random deposition
- Model parameters:
 - Medium size, range of grain size
 - Target porosity
Simulation
Characteristics of the Models
Porosity

- Fraction of the pore volume per unit (total) volume
 \[\phi = \frac{V_p}{V_T} \times 100\% = \frac{\text{pore volume}}{\text{total volume}} \]

- "Counting the black pixels"
Specific Surface Area

- Fraction of the pore surface area per unit (total) volume
 \[S_v = \frac{Obj. S}{V_T} = \frac{\text{pore surface area}}{\text{total volume}} \]

- “Edge detection” (using marching cubes method) of the pore walls
Permeability

- Measure of the ability of a porous material (often, a rock or unconsolidated material) to allow fluids to pass through it.
- Calculated using Kozeny-Carman equation:

\[
k = 10^2 \phi_c \frac{(\phi_c)^3}{c \tau^2 S_v^2}
\]
Structural Properties

- **Structure Thickness (St.Th)**
 - ~ grain size
 - diameter of the largest sphere of a point inside the solid space
 - Starts with a “skeletonization” (identifying the medial axes of the solid structure) → “sphere-fitting” local thickness measurement

- **Structure Separation (St.Sp)**
 - ~ pore size
 - diameter of the largest sphere of a point inside the pore space
 - Starts with a “skeletonization” (identifying the medial axes of the pore structure) → “sphere-fitting” local thickness measurement

- **Fractal Dimension**
 - ~ surface complexity
 - how that object’s surface fills space
 - calculated using the Kolmogorov or “box counting” method
Result and Discussion
Porosity

2D porosity vs z-slice

Total Porosity

Fraction of Connected Pores

Fraction of Closed Pores
Specific Surface Area

![Graph showing specific surface area for different models.](image)
Structure Thickness
Structure Separation
Fractal Dimension

Average of Structure Thickness

Average of Structure Separation

Fractal Dimension
Permeability

![Permeability Chart]

- **Models**:
 - Gv01, Gv02, Gv03, Gv04, Gv05
 - Rnd01, Rnd02, Rnd03, Rnd04, Rnd05

- **Permeability (k [mD])**:
 - Range from 0 to 3500
 - Data points for Gv01 to Rnd05 are shown as blue and red circles.
Conclusion
Conclusion

- Gravity driven sedimentation model (Grv) have varying particle density (in vertical direction)
 - the effect of overburden pressure due to gravity,
- Random penetrable grain model (Rnd) have more uniform distribution of particle density
 - Very slow deposition
- Permeability along the vertical direction of the Grv models are also smaller compared to that of the Rnd models.
 - caused by smaller surface area of the Rnd models.

Future Work

- “Decorated” grain (polygonal) models based on both sedimentation models.
- Analysis of Kozeny-Carman equation and the Kozeny constant using both models.